Impairment of tight junctions and glucose transport in endothelial cells of human cerebral cavernous malformations.
نویسندگان
چکیده
Cerebral cavernous malformations (CCMs) often cause hemorrhages that can result in severe clinical manifestations, including hemiparesis and seizures. The underlying mechanisms of the aggressive behavior of CCMs are undetermined to date, but alterations of vascular matrix components may be involved. We compared the localization of the tight junction proteins (TJPs) in 12 CCM specimens and the expression of glucose transporter 1 (GLUT-1), which is sensitive to alterations in TJP levels, in 5 CCM specimens with those in 5 control temporal lobectomy specimens without CCM by immunofluorescence microscopy. The TJPs occludin, claudin-5, and zonula occludens ZO-1 were downregulated at intercellular contact sites and partly redistributed within the surrounding tissue in the CCM samples; there was also a marked reduction of GLUT-1 immunoreactivity compared with that in control specimens. Corresponding analysis using quantitative real-time reverse transcription polymerase chain reaction on 8 CCM and 8 control specimens revealed significant downregulation of mRNA expression of occludin, claudin-5, ZO-1, and GLUT-1. The altered expression and localization of the TJPs at interendothelial contact sites accompanied by a reduction of GLUT-1 expression in dilated CCM microvessels likely affect vascular matrix stability and may contribute to hemorrhages of CCMs.
منابع مشابه
Ultrastructural and immunocytochemical evidence that an incompetent blood-brain barrier is related to the pathophysiology of cavernous malformations.
OBJECTIVES Cerebral cavernous malformations are linked to mutations of the KRIT1 gene at the CCM1 locus and to mutations at two other loci, CCM2 and CCM3, for which genes are not yet identified. There is little information regarding the function of KRIT1. Histological and immunocytochemical analysis of cavernous malformations have not shed much light on their pathophysiology. METHODS Morpholo...
متن کاملConnexin 43 gap junctions contribute to brain endothelial barrier hyperpermeability in familial cerebral cavernous malformations type III by modulating tight junction structure.
Familial cerebral cavernous malformations type III (fCCM3) is a disease of the cerebrovascular system caused by loss-of-function mutations in ccm3 that result in dilated capillary beds that are susceptible to hemorrhage. Before hemorrhage, fCCM3 lesions are characterized by a hyperpermeable blood-brain barrier (BBB), the key pathologic feature of fCCM3. We demonstrate that connexin 43 (Cx43), a...
متن کاملUpregulation of transmembrane endothelial junction proteins in human cerebral cavernous malformations.
OBJECT Cerebral cavernous malformations (CCMs) are among the most prevalent cerebrovascular malformations, and endothelial cells seem to play a major role in the disease. However, the underlying mechanisms, including endothelial intercellular communication, have not yet been fully elucidated. In this article, the authors focus on the endothelial junction proteins CD31, VE-cadherin, and occludin...
متن کاملCORRELATION BE TWEEN ENDOTHELIAL INJURY AND CEREBRAL VASOSPASM FOLLOWING A DOUBLE SUBARACHNOID HEMORRHAGE IN THE RAT
While a wide array of pathological changes occur in cerebral arteries following subarachnoid hemorrhage (SAH), the most consistent is endothelial damage. Since the endothelium normally modulates reflexes that influence vascular tone, any damage to it may represent a significant contributor to cerebral vasospasm following SAH. This experimental study investigates the correlation between end...
متن کاملRegulation of cardiovascular development and integrity by the heart of glass–cerebral cavernous malformation protein pathway
Cerebral cavernous malformations (CCMs) are human vascular malformations caused by mutations in three genes of unknown function: KRIT1, CCM2 and PDCD10. Here we show that the heart of glass (HEG1) receptor, which in zebrafish has been linked to ccm gene function, is selectively expressed in endothelial cells. Heg1–/– mice showed defective integrity of the heart, blood vessels and lymphatic vess...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuropathology and experimental neurology
دوره 70 6 شماره
صفحات -
تاریخ انتشار 2011